On page 131 I wrote:
... hydrogen gradually leaks out
of any practical container. If you park your hydrogen car at the railway
station with a full tank and come back a week later, you should expect to
find most of the hydrogen has gone.
Both of these statements are incorrect.
First, while hydrogen is a very leaky little molecule, it is possible to make practical containers that contain compressed hydrogen gas for long durations. It's just necessary to have sufficient thickness of the right type of material; this material may be somewhat heavy, but practical solutions exist. The technical term used in the hydrogen community for this topic is "permeation", and it's especially discussed when ensuring that hydrogen vehicles will be safe when left in garages. Hydrogen containers are currently classed in four types, and the metallic containers and containers with metallic liners (Types 1, 2, and 3) have negligible permeation rate. However, hydrogen permeation is an issue for containers with non-metallic (polymer) liners (Type 4) which readily allow the permeation of hydrogen. [Source: P. Adams et al]
Second, when discussing the hydrogen vehicle that is left for 7 days, I incorrectly tarred all hydrogen vehicles with a hydrogen-loss brush that applies only to vehicles that store liquified hydrogen at cryogenic temperatures. There are in fact three types of hydrogen storage: Compressed gas (typically at 350 or 700 bar); Cryogenic (typically at less than 10 bar and at extremely low temperature) and Cryo-compressed (at low temperature and at pressures up to about 350 bar). The hydrogen community discuss the "loss-free dormancy time" and the "mean autonomy time" of a system, which are respectively the time after which the system starts to lose hydrogen, and the time after which the car has lost so much hydrogen it really needs refilling. In the US Department of Energy's hydrogen plans, the targets are for a loss-free dormancy time of 5 days and a mean autonomy time of 30 days. Cryogenic liquid-hydrogen systems (such as the one in the BMW Hydrogen 7, which I featured in my book) do not currently achieve either of these targets. (And the reason is not that the hydrogen is permeating out, it's that heat is permeating in, at a rate of 1 watt or so, which gradually boils the hydrogen; the boiled hydrogen is vented to keep the remaining liquid cold.) However, compressed-gas systems at 700 bar can achieve both of these targets, so what I wrote was unfair on hydrogen vehicles. [Source: EERE 2006 Cryo-Compressed Hydrogen Storage for Vehicular Applications]
I apologise to the hydrogen community for these errors.
I will add a correction to the errata imminently.